Design, Optimization, and Test Methods for Micro-Electrode-Dot-Array Digital Microfluidic Biochips

نویسندگان

  • Zipeng Li
  • Krishnendu Chakrabarty
چکیده

Digital microfluidic biochips (DMFBs) are revolutionizing many biochemical analysis procedures, e.g., high-throughput DNA sequencing and point-of-care clinical diagnosis. However, today’s DMFBs suffer from several limitations: (1) constraints on droplet size and the inability to vary droplet volume in a fine-grained manner; (2) the lack of integrated sensors for real-time detection; (3) the need for special fabrication processes and the associated reliability/yield concerns. To overcome the above limitations, DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been proposed. Unlike conventional digital microfluidics, where electrodes of equal size are arranged in a regular pattern, the MEDA architecture is based on the concept of a sea-ofmicro-electrodes. The MEDA architecture allows microelectrodes to be dynamically grouped to form a micro-component that can perform different microfluidic operations on the chip. Design-automation tools can reduce the difficulty of MEDA biochip design and help to ensure that the manufactured biochips are versatile and reliable. In order to fully exploit MEDA-specific advantages (e.g., real-time droplet sensing), this dissertation research targets new design, optimization, and test problems for MEDA biochips.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances in Testing Techniques for Digital Microfluidic Biochips

With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in vari...

متن کامل

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

Design Automation and Test Techniques for Microfluidic Biochips

Microfluidics-based biochips, also referred to as lab-on-a-chip (LoC), are devices that integrate fluid-handling functions such as sample preparation, analysis, separation, and detection. This emerging technology combines electronics with biology to open new application areas including point-of-care diagnosis, on-chip DNA analysis, and automated drug discovery. As digital microfluidic biochips ...

متن کامل

Synthesis of Digital Microfluidic Biochips with Reconfigurable Operation Execution

Microfluidic biochips are an alternative to conventional biochemical laboratories, and are able to integrate on-chip all the necessary functions for biochemical analysis. The " digital " biochips are manipulating liquids not as a continuous flow, but as discrete droplets on a two-dimensional array of electrodes. The main objective of this thesis is to develop top-down synthesis techniques for d...

متن کامل

Design and Optimization for Digital Microfluidic Biochips

Microfluidic-based biochips are soon revolutionizing clinical diagnostics and many biochemical laboratory procedures due to their advantages of automation, cost reduction, portability, and efficiency [18]. Conventional technology depends on the manipulation of continuous liquid flow through microfabricated channels. However, actuation of flow is implemented with external assistance of micro-pum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017